
11

ARM RealView ESL APIs
5th NASCUG Meeting

July, 24 th 2006

Nizar ROMDHANE
ESL Technical Marketing Manager, DSMK

July 2006

222

Presentation Structure

� Introduction

� Cycle-based Scheduling

� CASI: simulation interface basics - technical overview

� Protocols: encapsulating a bus interface in CASI

� CADI: debugging interface basics - technical overview

� CAPI: profiling interface basics - technical overview

� ARM RealView ESL APIs timelines

333

Transaction Level Modelling
� Nowadays we can classify 2 main Modelling Styles

� Pin Level Modelling

� Pin accurate with RTL model at the Bus interface

� Cycle accurate with RTL model

� Internal behaviour and timing is abstracted to the clock cycle boundary

� Introduced by SystemC v1.0 and uses heavily sc_in, sc_out, sc_inout and
sc_signal

� Transaction Level Modelling (TLM)

� Bus interfaces abstracted to ports carrying transactions

� Communication uses function calls

� Timing can be:

� Cycle accurate (CC)

� Timing Approximate (PVT)

� Untimed (PV)

� Introduced by SystemC v2.0 and is based on interfaces and channels

444

Abstraction Layers: OSCI TLM

CC (Cycle-accurate)

No Proposals up to now

PVT (Approximate Timing)
WG starts defining it

PV (Untimed)

All WG efforts currently

CA (Cycle Accurate)

CX (Cycle Approximate)

ARMOSCI TLM

555

ARM is Adopting and Donating

PV (Untimed)

All WG efforts currently

CA (Cycle Accurate)

CX (Cycle Approximate)

ARMOSCI TLM

PVT (Approximate Timing)
WG starts defining it

CC (Cycle-accurate)

CASI Donate to OSCI
& Drive

Standardization

PV (w/ Code Translation
Technology)Support PV

Standard

666

ARM RealView ESL APIs
� ARM RealView ESL APIs are a Bundle of:

� Cycle-Accurate Interfaces

� CASI: Cycle Accurate Simulation Interface

� CADI: Cycle Accurate Debug Interface

� CAPI: Cycle Accurate Profiling Interface

� AMBA (AXI, AHB and APB) Implementation on top of CASI

� APIs are provided openly
� Web-hosted under an AMBA-like click-through agreement

� http://www.arm.com/products/DevTools/RealViewESLAPIs.html

� Version 1.0 released in Oct 2005 with endorsements from major EDA vendors

� Version 1.1 has just been released at DAC06
� Deliverables:

� Specifications: Including APB/AHB/AXI Transaction Level Modelling

� Header files

� Examples:

� Source code examples provided for OSCI Open Source Proof of Concept
Simulator of:
� AXI simple master, slave and connection

� AHB simple master, slave and connection

777

CAPI lfCAPI lf

CASI
If

CASI
If

RealView ESL APIs Overview

CADI lf CADI lf

Component Component

Profile Server

�CASI: Cycle-based SystemC simulation interface
�CADI: C++ debug interface
�CAPI: C++ profiling interface

Debug Server

888

� Introduction

� Cycle-based Scheduling

� CASI: simulation interface basics - technical overview

� Protocols: encapsulating a bus interface in CASI

� CADI: debugging interface basics - technical overview

� CAPI: profiling interface basics - technical overview

� ARM RealView ESL APIs timelines

Presentation Structure

999

Definition of ‘Cycle’

� Timing is represented in the form of cycles.

� The RealView ESL APIs do not define the meaning of a cycle
to be a “clock cycle”.
� Rather this decision is left to the individual model.

� The meaning of a cycle is decided by the model abstraction level. E.g.:

� Instruction-accurate core: 1 cycle = 1 instruction.

�Cycle-accurate core: 1 cycle = 1 clock cycle.

� Functional memory component: 1 cycle = 1 read/write operation.

101010

Cycle-based Scheduling: Sequencing
Initialization

Execution

Termination

Create

Configure

Init

Interconnect

Reset

Communicate

Update

Terminate

Destruct

Cycle

111111

� Introduction

� Cycle-based Scheduling

� CASI: simulation interface basics - technical overview

� Protocols: encapsulating a bus interface in CASI

� CADI: debugging interface basics - technical overview

� CAPI: profiling interface basics - technical overview

� ARM RealView ESL APIs timelines

Presentation Structure

121212

Cycle-Accurate Simulation Interface (CASI)

�Supports both event-driven and cycle-based scheduling

�Non-blocking

�Bi-directional

�Interfaces:
� Transaction-level:

�read/write, readReq/writeReq

�driveTransaction

� Signal-level:

�driveSignal

CASIOSCI

Slave port Channel/sc_export

Master port Port (sc_port)

CASI Terms:

131313

CASI TLM Access Methods

� CASI Supports 3 access methods:
1. Synchronous accesses:

– read/write

– Every cycle read/write is called to check if data ready

2. Asynchronous accesses:
– readReq/writeReq, readAck/writeAck

– Callback function sent to slave. Slave calls it when ready.

3. Asynchronous shared memory accesses:
– driveTransaction/notifyEvent

– Shared data structure sent on first call. Slave updates this data
structure directly.

– repeated calls as well as notification callbacks allow interim update
triggering

141414

CASI TLM Main Constructs
� CASI Interfaces

� CASI Transaction Interface
class casi_transaction_if : public sc_interface {…};

� CASI Transaction Callback Interface
class casi_transaction_callback_if {…}

� CASI Notify Handler Interface
Class CASINotifyHandlerIF {…};

� CASI Signal Interface
class casi_signal_if : public sc_interface {…};

� CASI Transaction Structures
� CASI Transaction Properties

struct CASITransactionProperties {…};

� CASI Transaction Info
struct CASITransactionInfo {…};

� CASI Module
class casi_module: public sc_module {…};

151515

� Introduction

� Cycle-based Scheduling

� CASI: simulation interface basics - technical overview

� Protocols: encapsulating a bus interface in CASI

� CADI: debugging interface basics - technical overview

� CAPI: profiling interface basics - technical overview

� ARM RealView ESL APIs timelines

Presentation Structure

161616

CASI support for abstraction / protocols

� CASI supports any bus protocol

� CASI interface has been proven to support AMBA protocols, as well
as other industry standard bus protocols

� Bus-generic transactional interface can be easily personalized for
support of a specific bus protocol

� ARM RealView ESL APIs are provided with support for all AMBA
protocols: AXI, AHB, APB

� CASI supports any model abstraction
� Cycle-based execution can be clock-or-instruction cycle based

� One interface for all ESL model abstractions

� Enables a simple refinement process for ESL models

171717

Bus protocol mapping on CASI
� The following will illustrate the official AXI protocol mapping to CASI as an

example.

� To map a bus protocol onto CASI
� Create a mapping of the protocol fields to the CASI access method parameters

� E.g.: AXI using CASI asynchronous shared memory access mode

� AXI Master port:
� sc_port specialized w/ casi_transaction_if

class AXI_TM : public sc_port<casi_transaction_if, 0> {… };

� Implements driveTransaction method

� AXI Slave port:
� casi_transaction_if or sc_export specialized w/ casi_transaction_if

class AXI_TS : public casi_transaction_if {…};

� Implements driveTransaction, notifyEvent

� AXITransaction:
� inherited from CASITransactionInfo

class AXITransaction : public CASITransactionInfo {…};

181818

Example AXI Protocol in CASI

clk

AXI_MasterAXI_Master

info
(common

data structure)

clk

communicate(){
AXI_TM->driveTrans(info);
...

}
update()
{
...

}

AXI_SlaveAXI_Slave

FFFF8

FFFF7

FFFF6

FFFF5

FFFF4

00013

FFFF2

FFFF1

00000

ValueAddress

AXI_TS: Slave Port
driveTrans(info){

...
}

User-code

Standard classes provided by CASI-AXI

communicate()
{
...

}
update()
{
...

}

clk

AXI_TM: Master port
driveTrans(info){
slave->driveTrans(info)

}

notifyEvent

191919

� Introduction

� Cycle-based Scheduling

� CASI: simulation interface basics - technical overview

� Protocols: encapsulating a bus interface in CASI

� CADI: debugging interface basics - technical overview

� CAPI: profiling interface basics - technical overview

� ARM RealView ESL APIs timelines

Presentation Structure

202020

CADI Overview
� The Cycle Accurate Debug Interface (CADI) is intended for use in

conjunction with the Cycle-Accurate Simulation Interface (CASI) to allow
inspection and modification of the internal state of SystemC models
through an externally attached debugger.

� However, these hooks would be of little value if the simulation cannot be
controlled from the debugger

� The models run under the supervision of a simulation host which is in
charge of managing the SystemC simulation. For cycle-based scheduling,
calling the communicate/update methods in each cycle.

� CADI is intended to serve as a bridge between high level simulation
commands that a debugger may issue and low level simulation commands
that a simulation engine may understand.

212121

� Introduction

� Cycle-based Scheduling

� CASI: simulation interface basics - technical overview

� Protocols: encapsulating a bus interface in CASI

� CADI: debugging interface basics - technical overview

� CAPI: profiling interface basics - technical overview

� ARM RealView ESL APIs timelines

Presentation Structure

222222

CAPI interface Overview
� The CAPI interface supports a generic implementation of

profiling, allowing collecting of different types of data,
organized around streams and channels of information.

� Profiling streams and channels
� A CAPI interface implemented by a model will have one or more

profiling streams.

� Each stream will contain one “thread” of information.

� For each profiling stream CAPI maintains two distinct data structures:
the stream metadata and the stream content.

� The stream metadata describes what profiling data is collected, plus
hints to present the data for final human consumption.

� The stream content is the actual data collected during simulation. Each
profiling stream collects data for one or more profiling channels. Each
channel represents one piece of information to be collected in the
stream.

232323

� Introduction

� Cycle-based Scheduling

� CASI: simulation interface basics - technical overview

� Protocols: encapsulating a bus interface in CASI

� CADI: debugging interface basics - technical overview

� CAPI: profiling interface basics - technical overview

� ARM RealView ESL APIs timelines

Presentation Structure

242424

Releases
� V1.0: already released in October 05

� CA interfaces: CASI / CADI / CAPI

� Media Alert with Major EDA vendors endorsements

� V1.1: Scheduled for July 06
� CASI:

� Memory Map Interface, Dynamic Config

� AMBA AXI-CASI:

� Support of 128-bit data

� V1.1.1: Scheduled for Oct 06
� Component Wizard

� V2.0: Scheduled for March 07
� PVSI: PV Simulation Interface (based on OSCI TLM v2.0)

� First OSCI TLM PV to CASI adaptation technology

� AMBA AXI-CASI:

� New Ports classes to support sequential and combinatorial behaviours
targeting AMBA4

252525

Thank You

