
Verilator and
SystemPerl
Wilson Snyder,
wsnyder@wsnyder.org

http://www.veripool.com

June, 2004



2Verilator Environment, NASCUG June 2004. Copyright 2004 by Wilson Snyder; redistribution allowed as complete presentation.

Agenda

• Introduction

• Design Goals

• Benefits

• Our Tool Flow
– Verilator: Verilog to SystemC
– SystemPerl: Making SystemC Less Verbose

• Improving SystemC Compile Times

• Obtaining the Tools



3Verilator Environment, NASCUG June 2004. Copyright 2004 by Wilson Snyder; redistribution allowed as complete presentation.

Introduction

• In 2000, we were starting a all new project and could
choose all new tools
– Wanted Verilog, for easy synthesis and related tools
– Wanted C++, to share code with our embedded application
– Wanted object oriented language, for test benches
– Wanted behavioral modeling

• Needed to handle a large design
– Four 3-6 million gate designs
– Over 20 designers
– Over 1.2M lines of code in 4,700 files

• What we came up with is my topic today:
– SystemC and Verilog, together!



4Verilator Environment, NASCUG June 2004. Copyright 2004 by Wilson Snyder; redistribution allowed as complete presentation.

Benefits

• Faster Architectural Development
– SystemC allows rapid behavioral model development
– C++ allows tie-ins with embedded software

• Faster RTL Development
– Verilog is standard language, and what the downstream tools want.
– Behavioral model provides reference for RTL developers.
– Waveforms “look” the same across RTL or SystemC, no new tools.

• Faster Verification Development
– Verification tests can be developed against the fast behavioral model

then run against slower RTL
– Every chip and subchip can each be either behavioral or RTL
– C++ hooks can be added to the Verilog
– Automatic coverage analysis



5Verilator Environment, NASCUG June 2004. Copyright 2004 by Wilson Snyder; redistribution allowed as complete presentation.

CAD Flowchart

Verilog

Standard GNU C++ Tool chain backend,
compiled on many hosts in parallel.

C++

Executable

G++

Embedded
Software

Team

Preprocess SystemPerl code into C++.
(Simplifies signal and cell interconnect.)

SystemC

SystemPerl

Architecture
Team

Translate Verilog code
 into SystemC.

Verilator

RTL
Team

Verilog

Verification
Team



6Verilator Environment, NASCUG June 2004. Copyright 2004 by Wilson Snyder; redistribution allowed as complete presentation.

What Verilator Does

• Verilator converts Synthesizable Verilog into C++
– Always statements, wires, etc
– No time delays ( a <= #{n} b;)
– Only two state simulation (no tri-state busses)
– Unknowns are randomized (even better then having Xs)

• Creates C++ classes for each level in the design

• Creates own interconnect and signal formats
– Original version used sc_signals, but they are >10x slower!

• Creates a "pure" SystemC wrapper around the design
– Hides the internal signals and sensitivity lists from the user



7Verilator Environment, NASCUG June 2004. Copyright 2004 by Wilson Snyder; redistribution allowed as complete presentation.

Example Translation

• Inputs and outputs map directly to bool, uint32_t or
sc_bv's:

module Convert;
   input clk
   input [31:0] data;
   output [31:0] out;

   always @ (posedge clk)
      out <= data;
endmodule

#include "systemperl.h"
#include "verilated.h"

SC_MODULE(Convert) {
   sc_in_clk        clk;
   sc_in<uint32_t>  data;
   sc_out<uint32_t> out;

   void eval();
}

SP_CTOR_IMP(Convert) {
  SP_CELL(v,VConvert);
  SC_METHOD(eval);
  sensitive(clk);
}
…



8Verilator Environment, NASCUG June 2004. Copyright 2004 by Wilson Snyder; redistribution allowed as complete presentation.

Talking C++ inside Verilog
• Verilator allows C++ code to be embedded directly in

Verilog
`systemc_include
  #include "MDebug.h"

`systemc_header
  public:

int debug();

`systemc_ctor
  __message = MDebug::debug();

`systemc_implementation
  int debug() {
     return __message; 
  }

`verilog
  always @ (posedge clk)
     if ($c1("debug()"))
         $write("Debug message…\n");

Place at the top of the generated header file.

Place inside the class definition of the
generated header file.

Place in the constructor of the
generated C++ file.

Place in the generated C++ file.

Use the C++ text "debug()" that returns
a one bit value for this expression.



9Verilator Environment, NASCUG June 2004. Copyright 2004 by Wilson Snyder; redistribution allowed as complete presentation.

Verilator Optimizations

• Verilator performs many standard compiler
optimizations
– Netlist optimizations

• wire b=~a;
• wire c=~b;
• wire d=c;   // Inside the simulator, it will become "d=a"

– Constant folding
– Module, function and task inlining
– Levelization
– Coverage analysis

• End result is Verilog simulation as fast as the leading
Verilog-only simulators.
– It would beat them, but the SystemC kernel is slow…



10Verilator Environment, NASCUG June 2004. Copyright 2004 by Wilson Snyder; redistribution allowed as complete presentation.

SystemPerl

• Verilator outputs a dialect of SystemC, SystemPerl.
 (Though Verilator also has option to output straight C++.)

• SystemPerl makes SystemC faster to write and execute
– We needed only 43% as much SystemC code
– Standardizes Pin and Cell interconnect
– Lints interconnect
– Automatically connects sub-modules in “shell” modules

• So, adding a signal to low-level modules doesn’t require editing the
upper level modules.

– Adds “use” statements for linking all necessary library files
– Creates compiled tracing code (5x faster then SystemC's tracing.)

• Reducing code means faster development
– And less debugging!



11Verilator Environment, NASCUG June 2004. Copyright 2004 by Wilson Snyder; redistribution allowed as complete presentation.

Faster SystemC Compiles

• Our model has 1,200 SystemC Modules
– Compile time would be >> 4 hours on 2GHz system

• How we fixed it [and tips you might benefit from…]
– Cache objects so same source creates same object instantly

• Make::Cache from my website
– Use make -j parallel make on many machines (30x faster)

• Schedule::Load package from my website
– Compile multiple modules in one GCC run (10x faster)

• a_CONCAT.cpp made by SystemPerl
• #include "aSomething.cpp"
• #include "aAnother.cpp“

• Thus reduces total number of GCC runs
– Now it's 7 minutes to compile…



12Verilator Environment, NASCUG June 2004. Copyright 2004 by Wilson Snyder; redistribution allowed as complete presentation.

Avoid Includes!

• SystemC documentation suggests the bad practice of
putting SC_CTOR implementation in the header file.
– If a low level module changes, you need to recompile EVERYTHING!

• Instead, remove all unnecessary #includes in header files!
– Move any implementation code, such as constructors to the .cpp file
– Declare SubModules as just "class SubModule"
– Only #include submodules in the .cpp file

// FileName.h
class SubModule;
SC_MODULE(Foo) {
  …
  SubModule* subcell;   
  …
  SC_CTOR(Foo);
};

// FileName.cpp
#include "SubModule.h"
SP_CTOR_IMP(Foo) {
   …
}



13Verilator Environment, NASCUG June 2004. Copyright 2004 by Wilson Snyder; redistribution allowed as complete presentation.

Conclusions

• With the SystemPerl and Verilator methodology we
– Enable high level SystemC modeling
– Write standard Verilog RTL
– Can interchange Verilog <-> SystemC on major modules
– Run as fast as major simulators.
– Have a license-free environment.

• Multiple languages suit each team best
– Faster Development, faster time to market

• Free runtime is good
– $$ we would have spent on simulator runtime

licenses went to computes.



14Verilator Environment, NASCUG June 2004. Copyright 2004 by Wilson Snyder; redistribution allowed as complete presentation.

Download Verilator from
Veripool.com

• Downloading Verilator and SystemPerl:
– GNU Licensed
– C++ and Perl Based
– http://www.veripool.com

• Also free on my site:
– Dinotrace – Waveform Viewer w/Emacs annotation
– Make::Cache - Object caching for faster compiles
– Schedule::Load – Load Balancing (ala LSF)
– Verilog-Mode - /*AUTO…*/ Expansion, Highlighting
– Verilog-Perl – Verilog Perl preprocessor and signal renaming
– Vpm – Assertion preprocessor
– Vregs – Extract register and class declarations from documentation
– Vrename – Rename signals across many files (incl SystemC files)


